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Analysis of Eddy-Current Losses Over Conductive
Substrates with Applications to Monaolithic
Inductors and Transformers
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Abstract—In this paper, a closed-form integral representation the magnetic field is strongest [1], [2]. This leads to more pro-
for the eddy-current losses over a conductive substrate is pre- nounced current constriction along the inner core of the spiral.
sented. The results are applicable to monolithic inductors and In a previous paper [3], a technique was presented to analyze

transformers, especially when such structures are realized over the ski d imitv-effect | b donth . K
an epitaxial CMOS substrate. The technique is verified against € SKin-and proximity-eflect IoSses based on the previous wor

measured results from 100 MHz to 14 GHz for spiral inductors. ~ Of [4] and [S], especially the partial-element equivalent-circuit
Index Terms—CMOS substrate losses, eddy currents, monolithic (PEEC) formulation [6]. Electrical substrate losses were also

inductors, monolithic transformers, spiral inductors, spiral trans- a”a'yz‘?d in [3] basgd on the work of [7] and [8]. Eddy-current
formers. losses in the bulk Si substrate, though, were not accounted for,

as a free-space Green function was used to derive the induc-
tance. In this paper, previous work is extended by including the
magnetically induced losses in the substrate.
ONOLITHIC inductors and transformers, especially in The importance of modeling such effects was not initially re-
the form of spirals, have gained great importance in traized, as these effects were not widely observable in the bipolar

design of integrated silicon RF transmitters and receivers. Ford BICMOS substrates of interest because of the widespread
this reason, the analysis and optimization of such structures biae of highly resistive bulk materials. These effects, though,
been of paramount importance. were seen to be of integral importance when researchers at-

The optimization of these structures involves maximizing tHempted the construction of high-inductors over an epitaxial
quality factor@ of these devices, or equivalently, maximizingcMOS substrate [9]. In [1], the importance of modeling eddy
the magnetic or electromagnetic energy stored by the structueggrents was further demonstrated through numerical electro-
while minimizing the energy dissipation. There are severglagnetic simulation. These simulations and measurement re-
mechanisms for energy dissipation. At the frequencies #filts clearly show that eddy currents are a dominant source of
interest, in the dc—15-GHz range, the most important losdess in these substrates.
occur in the metal layers that form the devices, as well as in theln this paper, approximate two-dimensional (2-D) expres-
bulk Si substrate that appears below the device. sions for the eddy-current losses over a multilayer substrate are

Due to the nonzero resistivity of the metal layers, there agerived. These can be used to predict the losses in inductors
ohmic losses in the metal traces as well as eddy-current lossayl transformers fabricated over such substrates. In Section I,
The eddy currents in the metal traces arise from the magnétie results are derived using quasi-static analysis. In Section Il
field generated by the device that penetrates the metal layéhe losses at low frequency are calculated, and in Section 1V,
These magnetic fields induce currents that give rise to a nonitfie results are extended to high frequency. Finally, in Section V,
form current distribution along the width and thickness of corihe results are compared to measurement.
ductors, pushing current to the outer skin of the conductors.
These effects are also known as skin and proximity effects. Skin- [I. ELECTROMAGNETIC FORMULATION
effect losses are from the magnetic field of the “self"-induca - paytia| pifferential Equations for Scalar and Vector
tance of a metal trace, whereas proximity effects result from thg: tig|
magnetic field of nearby conductors. The proximity of nearby i i . )
conductors also contributes to the current distribution in a con-Consider a long filament sitting on top of a multilayer sub-

ductor, most prominently for the innermost turns of spiral wheRirate- A cross section of the geometry is shown in Fig. 1. As-
sume the filament is carrying a time—harmonic current. The

substrate is assumed infinite in extent in the traverse direction,
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Fig. 2. Schematic representation of electrically and magnetically induced
currents.
Fig. 1. Multilayer substrate excited by a filamental current source. though, can be safely ignored. To understand this physically,

consider the schematic representation of the substrate currents
The electric and magnetic fields are completely determingtiown in Fig. 2. Clearly, the electrically induced current
by Maxwell's equation. The time—harmonic fields are detedistribution leads to a zero magnetic field. This can be shown
mined by the scalar and vector potentials [10] at low frequency by noting th&f x V¢ = 0.
) Applying the coulomb gauge to the electric divergence rela-
E=—-juA=-V¢ 1) tion, we obtain the well-known electrostatic Poisson’s equation
B=VxA. @3]
V-E=V (—jwA—-V¢)=-V=p/e. (6)
For obvious reasons, we will denote the first term of (1) the mag-
netic response and the second term of (1) the electric resporsie modify the above equation by replacing the electric per-

From Maxwell's equations, we have the well-known relation Mittivity with
V(V-A) - V2A = pJ + jwpcE. 3) e=¢ 4’ — jg @)

Assuming the substrate and metal conductors are linear agg account for the loss tangent of the material as well as the
isotropic gives conductive losses. Thus, the electrically induced losses can be
J—oE+J @) _derived from (6) instea_d of _(5). Thisisvalid as Iong as sI_<in effect
srer in the bulk does not significantly alter the electrically induced

Substituting (4) and (1) in (3) and invoking a coulomb gaug@irrent distribution in the substrate. With these simplifications,
results in the following: we have
p
VA = p(jwcA — w?eA(o + jwe)Vé — Jone).  (5) Vi = - (8)

2 24
The parenthetical expression on the right-hand side has units of (V2 =)A= pdsre ©)

current density. The first term can be identified as the magnq;\;here

cally induced eddy currents that flow in the substrate and metal

conductors. The second term is the dynamic radiation current v = pew? — jwo (10)
term. The third term includes the electrically induced conduc-

tive and displacement currents flowing in the substrate. Final@de is given by (7).

the last term is the impressed currents flowing in the metal ¢
ductors.

At microwave frequencies of interest{5 GHz), the con-  Under a 2-D approximation, the magnetic vector potential
stant of the second term is at least three orders of magnitugelirected in the direction of current and, hence, has only a
smaller than the first, and can be safely ignored. The physi¢iinzero component in thedirection. At microwave frequen-
significance is that radiation is negligible. Dropping the thir@ies of interest, (9) simplifies and for each region
term of (5) has two implications. First, the magnetic-field 24
contribution of the electrically induced currents will be ig- ViAy, = jopmonAx. (11)
nored. Second, the electrically induced substrate losses W} {he method of separation of variables in rectangular coordi-

be ignored. The second implication is a far bigger concef}es [11], we write the solution in each layer as follows:
as the electrically induced substrate losses are significant at

frequencies of interest. The contribution to the magnetic field, Ap(z, y) = Xp(@)Ye(y)z. (12)

on- . )
Q. Boundary Value Problem for Single Filament
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Substitution of the above form in (11) produces two ordinary The boundary conditions at the filament interface- b re-
constant-coefficient second-order differential equations quire special care. Applying (21) and (22), we have [12]

2
L =i, (19 S 0% = LI ()
dng Ho O |,y H1 0T |,
kE_ .2 1 0A 1 0A
ez = Yk (14) <— o 2 —1} —K(x 30
&y po dy e Ay |, (=) (30)
with the additional constraint that
where
Ve —m® = jwpkoy. (15) K(z) = 6(x)] (31)

Due to the even symmetry of the problem, one selects ] ) ] ]
or, equivalently, expressing (31) as an inverse cosine transform

Xi = cos(ma) (16) e
and by (15), it follows that (z) - /0 cos mx dm (32)
Yy = Mye™Y + Npe %Y. (17) Thus, all the unknown coefficients may be evaluated and the

boundary value problemis solved. This is the approach followed
Since we seek the vector potential over an infinite domain, the[12] and [13]. An alternative derivation, which leads to a dif-
most general solution has the following form: ferent integral representation of the magnetic potential, is pre-
o0 sented in [14]. Observe that the magnetic field in the free-space
Ap(z, y) = / (Mpe™¥ + Npe ") cos madm. (18) region above the substrate may be expressed as arising from two
0 sources: the filament current and the currents flowing in the sub-
For NV conductive layers, there agé N + 2) unknown coeffi- strate (the eddy currents). To derive the term arising from the
cients in the expansion of (18). There &EV + 1) boundary filament in free space, observe that
conditions, which hold at the interface of each layers. The

boundary conditions follow from Maxwell’s equations [10] B(r)= ’;—OI (33)
wr
(Bk+1— By) -7 =0 (19)  which may be expressed by the converging Fourier integrals
(Hipr — Hi) x o =K (20) siol
) . By, = lalis /e‘lb_ylm cos mz dm (34)
where K is the surface current density. Fbr> 1, the above 27
i impli 1
relations simplify to Bosy = /;L L S — (35)
70
By y =DBy1,, (21)
1 Y 1 Y This observation implies that
E Bk,"r = Lot Bk—l—l,rn (22) I b
. + I/LO 67 m
M, =— . 36
where o(m) o m (36)
By =V x (A) 23) U;mg the_ above relation and (29), the coefficients can_be ob-
1 tained uniquely for all layers. More generally, we can write
H, =— By. (24) o mly—vol
Wi B ul emly—uo

(14T(m)) cos (m(z — z0)) dm

(37)
where(zo, yo) is the source filament location. The unity term
<Mk+1> _1 <(1 + Ap)em% (11— )\k)@_h’“> <Mk> accounts for the filament current in free space and the term
Npv1 ) 2 (1— )\k)e+hk (14 A )eto Ny, involving I" accounts for the eddy currents in the substrate.
(25) In other words, the first term is the solution of the free-space
problem for the impressed filamental currents, whereas the
where second term is due to the response eddy currents in the sub-

A(‘Tv y) -
Note that (21) and (22) must hold for each mode of (18) so one 27 Jo m
can show that

M1 Yk strate. This particular form will be very fruitful in the analysis
Ak = (26)
Mk Vierl that follows.
and C. Problems Involving Circular Symmetry
arx = (Vaa1 — YUk (27) When the current excitation is circular or approximately sym-

(28) metric, as in the case of a polygon spiral inductor, the assump-
tion of circular symmetry also leads to a one-dimensional in-

SinceA — 0 asy — =£oo, it follows thatdly, = 0andNyy; =  tegral expression for the magnetic vector potential. The analo-

0 to satisfy the boundary condition at infinity. gous solution involves Bessel functions in the place of the co-

P = (Yr+1 + Ve Yk
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sine function of (37). This problem has been treated extensivel
in [14]-[16] using a magnetostatic formulation, and in [17] and
[18] using an electromagnetic formulation. In this paper, we will
concentrate on the infinite rectangular solution as it applies mor

directly to devices involving orthogonal or Manhattan geometry. ©  <° © q @ ®
It should also be noted that [19] used the circularly symmetric = «...%*s
solution to calculate the substrate losses.

w

A

Fig. 3. Cross section of square spiral inductor.
Ill. EDDY-CURRENT LOSSES ATLOW FREQUENCY g a P

A. Eddy-Current Losses for Filaments we obtain

With the magnetic vector potential known, we can proceed . —jwpl? [*° v
to calculate the eddy-current losses. There are two approaches? T/ = “&r /0 Jy, m)fy(y, m)dm.  (46)
to determine the losses. One approach is to use Poynting’s the- _ . .
orem to calculate the total power crossing a surface enclosié@%us' the equivalent resistance per unit length seen by the source
the filament. In the time—harmonic case, the real component
this power must be due to the lossy substrate sincg no other Iqss Req = R[2(P + Q)] /1. (47)
mechanisms are present [14]. The complex Poynting’s vector is
given by The imaginary part of (47) also contains useful information as
it represents the reactive power crossing the surface that can be
= E(E x H*). (38) attributed to inductance. This is a negative increasing function
2 of frequency that represents decreasing inductance as a function
If we integrate the normal component of this vector over thaf frequency. The inductance decreases due to the “image” eddy
surfacey = 0, we obtain the power crossing the substrate  currents flowing in the substrate. By Lenz’s law, these currents
00 flow in a direction opposite to the impressed current and, hence,
P+jQ == / (Ex H*) - jdz. (39) generate a magnetic field that tends to cancel the penetrating
-0 magnetic field of the source, thereby decreasing the inductance.
Considering now only the magnetic response of the substratelsing this principle, let us derive the power loss for the con-
from (1), we have figuration shown in Fig. 3. Note that two sets&fparallel cur-
rent filaments carry a curredtwhere the individual filaments
E=—juA (40)  are separated by a distane@nd the two sets of filaments are
Thus, (38) becomes separated by a distanee Notice that this curren_t d_istri_bution
crudely approximates one-half of the current distribution for a
S — —Jjw AX VXA (41) spiral .in.ductor of N turns. I.n a spiral inductor, the filaments
24 have finite length and vary in length. Here, we neglect “end ef-

For the geometry of Fig. 1, the integrand of (39) simplifies to fects” and calculate the losses for the average length filament.
Using (43), we have
—Jjw A(?A*

ing the filament becomes

S

(ExH"Y -§5= . (42) I [
H Jdy Alz, y) = % / fly, m)
In Section 1I-B, it was shown that the magnetic vector potential 0 N
has the following general form: % <Z cos m(z — d;) — cos m(z + di)) dm
B ul [ i=1
Awop) =52 [ S mycos madm. @3) 48)
Differentiating (43) under the integral and substituting in (3%nd
results in . pol [ .,
, —jw pl df(y, n) 21 Jo
P+jQ = Ev dz o ——5, 08 nx dn N
boJ oo a Y
ul [ 0 X <Z cos n(z — d;) — cos n(a:+d7;)> dn
X [2— / f(y, m)cos mz dm} . (44) i=1
T Jo

(49)

If we interch the order of int ti dob that
We Interchange the order ot Integrafion and observe tha and applying (46) while changing the order of integration, we

. /’ have
lim cos mx cos nx dx
B Pse="00 7 [7 o
. . . J = YL n
~ lim [sm L(im —n) 4 5o Lim + n)} arz Jy Jy v
L—oo m—n m-+n

= 7 (6(m.— n) + 6(m +n)) (45) ' < /_ Z H(z) dx) dmdn (50)
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where more detail in [3], [5], [6], and [21]. Integrating (43) over the
width «w of the source conductor, we obtain
H(zx)= Z + cos (n(z £ d;)) cos (m(z + d;)) (51) maw
is J pl [ sin —
Ap(z, y)==— / fly, m) m7w2 cos mx dm.
has been written in shorthand notation. Eaattomain integral 2r Jo 5
of (50) takes the form of (57)
/Oo cos m(z+a) cos n(z+73) dx If we further average the above expression over the finite width
—oo of the field point, we obtain
= 6(m—n) cos(ma+nB)r+6(m+n) cos(ma—nf)r. w2
52 oo sSimmm ——
(52) Aww (2, y) = /;_I / fly, m) m7w2 cos mx dm
m
Using the above relation reduces (50) to 0 9 (58)
272 poo ; ] it
o okpd N assuming the field conductor width is also equal.to
P+ = T /0 Fy(m)f(n) In order to calculate the total impedance for a set of filaments
in series, one must account for the self- and mutual-impedance
X Z sin(md;) sin(md;) | dmdn. (53) t€rms
i, ] ]UJA di, b
Zeq = Z —Jg ) = Z Z“T]J (59)
Alternatively, one can derive the equivalent impedance per unit i, %

length seen by the source driving the filament by simply o
serving that, by (1), the reflected magnetic contribution to t
impedance must be [12]

l3\7hereAj(di, b) is the vector potential generated by e con-
ctor evaluated at the location of conductand is given by

A= (d;, b) = i% /0 - f(b, m)cos m(d; — d;)dm (60)

(54)

Reg =R {J"—”AO(O’ b)} :

I " _ .
where the positive sign is used when the currents flow in the

Notice that (54) will lead to a different, yet equivalent, integregame direction, whereas the negative sign is used when the cur-

expression for the eddy-current losses. rents flow in opposite directions.
The factorn;, = I;/I accounts for the nonuniform current
B. Eddy-Current Losses for Conductors distribution along the length of the device. At low frequencies,

Due to the linearity of Maxwell's equations, we can invokd ~ 1V 4 since no current is lost to the substrate due to dis-

the superposition principle to calculate the losses when m cement current. At higher frequencies, though, it is critical

than one filament is present, even for a continuous distributittjﬁ’]evaluate (59) with _this factor in place as the c_urren_t distribu-
of the field. An alternative viewpoint is that, in calculating thd!on becomes nonuniform. In Section IV, we derive this current

vector potential for the filament case, we have actually deriv&iftribution.

the kernel of the integral operator that is the inverse transform

of (11) or the 2-D Green function [20]. IV. EDDY CURRENTS ATHIGH FREQUENCY
Thus, for any 2-D distribution of current over the multilayeA. Assumptions

substrate of Fig. 1, we can write the resulting vector potential

s In [6], the PEEC formulation is shown to be equivalent to

solving Maxwell’s equation. We can thus formulate our problem
B using a modified PEEC technique. Our modifications mainly
Ale, y) = // Gla, y)J (@, y)dS (55)  take advantage of the special geometry and symmetries in the

) ) ] roblem to reduce the calculations. This approach has already
where the surface integral is taken over the cross section of n pursued in [3]. Here, we present a more symmetric formu-
conductor and has the form of (43). If the current distribution ig;ion.

uniform, this simplifies to First, we would like to avoid generating volume elements
in the substrate. Generating volume elements in the substrate
Az, y) =1 // G(z, y) dS. (56) would allow free-space Green functions to be employed, but

this would produce too many elements. Since the Si substrate

In many practical cases, the current distribution is nonuniforns. only moderately conductive, we would require several skin
In these cases, one may approximate the current distributabepths of thickness in the substrate volume, as well as an area at
by dividing the cross section into uniform current distributiofeast two to three times the area of the device under investiga-
segments and apply (56) to such segments. This is discussetidn to include the fringing fields. Since the fields vary rapidly

N o _ . across the cross-sectional area and depth of the substrate, many

Note that this is not, in general, true for the vector potential since a dyadic h poi Idb ired. On th her hand. if f
Green function must be employed. However, it is valid for the 2-D case unddles points wou e required. On the other hand, If we formu-

investigation. late the problem with a multilayer Green function, the substrate
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Fig. 5. Voltages and currents along series-connected two-port elements.

Employing the same approximations as [5], we reduce this ma-
trix to the level of the conductors by invoking Kirchhoff’s cur-
rent law (KCL), at each node, to obtain [21]

M _ (ST(ZM)—ls)*l 63)

where the sparse rectangular matsixsums over the current
sub-elements of a conductor. Thus, each row has a one in a po-
sition corresponding to a sub-element and zero otherwise. The
problem with computing (63) directly is that the large matrix
Fig. 4. Layout ofL27 inductor. ZM must be computed and inverted.

effects are taken care of automatically and the substrate canc:[')eFaSt Computation of the Partial Inductance Matrix

effectively ignored in the calculation. Therefore, only the con- In [21], computation of (63) is avoided altogether by an it-
ductor volumes need to be meshed. erative solution. The matrix—vector products are accelerated by
Furthermore, since the conductors that make up the devié&ing advantage of thi/r form of the free-space kernel [22].
are good conductors, consisting primarily of aluminum, gold;his kernel specialization, though, limits the applicability of
or copper, displacement current in the volume of the conductdf¢ technique and precludes its application to the problem at
can be safely ignored. Thus, the divergenceless current distriband since this would require us to either ignore the Si substrate
tion in the conductors is found solely by solving the magnetéwhich distorts the free-space Green’s function) or to mesh the
static problem (9). The divergence of the current is determingdbstrate. Not only does the substrate meshing unnecessarily in-
from the electrostatic distribution of charge found by solvingrease the size of the problem, but it also requires a more com-
(8). plete PEEC formulation since displacement current cannot be
One further assumption greatly reduces the order of tighored in the substrate.

problem. If we assume that the current flows along the length of The authors of [23] have developed a more general iterative
the conductors in a one-dimensional fashion, then only meshi$@jver that can be applied to (63). The basis of their technique
in one dimension as opposed to two or three dimensionsisdo factorZ* using the singular-value decomposition (SVD).
needed. For a typical spiral shown in Fig. 4, we see that thissing an SVD, one can compress the matrix by only retaining
indeed a good approximation. Note that this does not preclu#ie larger singular values. This also allows fast computation of
a nonuniform current distribution along the length, width, omatrix-vector products. This, of course, requires an efficient
thickness of the conductors. Rather, the current is constraif@@cedure to compute the SVD. For matrices generated from in-
to flow in one direction only. This assumption is mostly in errofegral equations, [23] develops an efficient recursive process to
around the corners of the device where we may choose to ge&pute the SVD. In [3], an approximate technique is presented

a 2-D current distribution or we may simply ignore the corndp compute (63) indirectly by ignoring detail in long-range in-
contributions. teractions. This is, in fact, the crux of all the above-mentioned

techniques.

B. Partial Inductance Matrix - .
D. Efficient Calculation of Eddy-Current Losses

Given the assumptions of Section IV-A, we may subdivide = . - . .
éAs it stands, the derivations of Section Il are not directly ap-

the device into many sub-conductors, as shown in Fig. 5. Sinc : -
cable to the above analysis unless an unrealistic 2-D approx-

the current is constrained to flow in one dimension, the proble! tion | d A th di onal h the oth
can be reduced by solving the equivalent magnetic circuit eq quation 1S used. ree-dimensional approach, on the other
and, requires numerical integration calculations that are at least

tions. For the system of filaments, we calculate a partial indu . i :
tance matrixZ™ [4] where each nondiagonal element is comour orders of magnitude more expensive to perform. To see this,
note that instead of a one-dimensional integral for the magnetic

puted with vector potential, we would require a 2-D integral. Also, integra-
. tion of A over the source and field cross sections will add two to
Zi)j = jw / Aj-dl; (61)  four more dimensions. Finally, integration dfalong the path
“ of the field will involve one final line integral, adding at least
and the diagonal elements are given by one dimension to the problem. The 2-D approximation, though,

only involves an integral of one dimension. This is because the
integrations over the cross sections can be performed analyti-

7 M — . 7 .. .
Ziy=Hitje / Ai - dli. (62) cally and the integration along the path of the field is trivial to

C;
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compute due to the-direction invariance inherent in the 2-Dnonuniform mutual inductive effects that are contained in the
approach. first term of (65). Since the losses computed from (66) tend to be

On the other hand, the free-space calculation of the magnetiaform and do not influence the skin and proximity effects, one
vector potential is exact and the mutual inductance between ian reduce the number of calculations of (66) by including the
aments may be performed in closed form. To include the crassbstrate reflection terms at the conductor stage rather than at
section of the conductors requires numerical integration over ttie sub-conductor stage. Thus, we may include the computation
volume of the conductors. The geometric mean distance (GMBX)(66) by simply adding it to the reduced matrix term directly.
approximation [24], [25], on the other hand, yields closed-forihis reduces the number of computations froxiv? - A1?) to
results for the case of parallel rectangular cross sections. Th$/N?), where there aréV conductors divided into an average
each matrix element computation can be performed in closetld/ sub-conductors. The validity of this approach can be ver-
form. It has been found experimentally that the GMD approxified by calculating the equivalent resistance and inductance of
mation computes the free-space inductance value to a high melevice both ways.

cision for conductors over insulating or semi-insulating sub-
strates. [26]-[29], [3}. E. Eddy-Current Loss for Square Spiral Inductor

In order to retain the accuracy of the free-space GMD ap-To compute (66) for the case of a spiral inductor, one can take
proximation and the simplicity of the 2-D approximation, Weydvantage of the 2-D symmetries of Fig. 3 to further reduce the
propose a hybrid calculation. As already noted, due to linearigyymber of calculations fromd(N2) to O(2N). The complete
of the partial differential (9), we can write the general solutiogypstrate reflection matrix may be computed using the following
as follows: algorithm.

M, S . ial
A@, 4, 2) = Aee space + Asabotrate: (64) m;_t(reitx ZLet : 2N x 2N be the substrate partial inductance

The first term is the magnetic vector potential computed in

free space. The second term is the magnetic vector potential Fr.illdsre = dgials Psre + gt w)

resulting from the substrate currents. Note that the substrate _ /OO dme_m(hs"Jrh”d) () K (m, w)
currents are response currents, whereas the free-space currents 0 m "t ’
are impressed currents. The response currents are not known - cos (m(dsre — df1a)).

a priori, thus, the second term cannot be computed directly.
However, we have already factoret(z, %) in this form in Alsoletr,,.(dsc, hsr) represent théz, ) coordinates of the
(37). Thus, we may compute the first term directly, using trgource and sia(d 4, hsia) represent the field coordinates. Fi-
GMD approximation to simplify the calculations. The secongally, the geometric mean length of two segments is given by
Section I Soe the subsiate effects are secondary i nat L = VLT
. y in nature
at frequencies of interest, the error in the above approximation
tends to be second order, yielding accurate overall results.
Hence, computation of (63) proceeds to the following twBegin:

stages: Diagonal terms: ZZFME = LEME£(0, 2b, w)
~ for j=2:N
zM = zM" 4 28 (65) gﬁﬁs = LEMIf((j - 1)s, 2b, w)
en
where the second term is computed from for i=2:N
i ©0 for j=i+1: N
pjw
Z%J S = o /0 g(m) dm (66) ZZMJ (LGJWL/LSJJ\{[; 1)ZZJWISJ .
en
—mly—yol
g(m) = cos (m(z — o)) £ L(m)K(m, w). (67) end
m for j=N4+2:2N

The real part of the above matrix element represents the eddyZ{":* = LEMEf(L; + (j — (N +2))s, 2b, w)
current losses, and the imaginary part represents the decrease®
in inductance due to image currents flowing in the substrafer ¢ =2 : N

Note that the kernek is computed by integrating over the cross for j =N +2 : 2N

section of the source and field points. This term is unity for Zj‘ = (LEML/LGML_ \ZMS,
filaments, and for thin conductors of width, it is given by the  end

bracketed expression of (58). end

Note that the purpose of calculatiafy” is to obtain and ac- for i = N +1 : 2N
count for the nonuniform current distribution in the volume of for j =N +4+2 : 2N
the conductors. This nonuniformity arises primarily from the 2% = (LEME/LEME. NZM5 . o

2t is interesting to note that the GMD approximation is, in essence, a 2-D d
approximation as the functiolwg(r), the free-space 2-D Green function, is€n
averaged over the cross section of the conductors. let iji = Zi7 j
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Note that the above algorithm involves orf}{2/N) compu- lation of Inductors and Transformers for IGASITIQ.2 This
tations since the double loops only involve data transfer. tool can be used to analyze spiral inductors, transformers, metal
interconnect, and other similar structures residing over a multi-
F. Complete PEEC Formulation layer Si substrate.

Consider the series interconnection of conductors, as shown
in Fig. 5. Using the reduced partial inductance matrix discussed
in the previous section, along with the reduced lossy capacitafee Single-Layer Substrate

matrix discu_ssed in [7], one can form the following system of 1,0 magnetostatic problem of a one-layer conductive sub-

linear equations. ‘ ‘ strate has been the subject of detailed investigations. References
Let i, = (1/2)(é + iny1) represent the average[io)_[14] derive and compute the integrals of Section II. In par-

current  flowing in the Ath conductor. Similarly, 1€t {ic ar, [13] discusses numerical and analytical techniques to

s, = (1/2)(vx + vupy1) represent the average voltageompute the integral. In our research, we found numerical in-

of each conductor. Applying KCL and Kirchhoff's voltage lawegration sufficient and, thus, analytical integration was not our

(KVL) at each node gives main focus. The solution of the one-layer problem is summa-

rized by the following reflection coefficient:

N
o - (v F
i =i = 3 Y, <%) (68) D(m) = 2= o~ 2mu (72)

j=1 vrm

V. EXAMPLES AND MEASUREMENTRESULTS

N . . . .
o — v _ Z oM (b + 1541 (69) whereyy is the source-coordinate. For the case of a one-layer
b L f kod 2 substrate, we found the following analytical representation:
=

whereY € represents the complex lossy capacitive admittance ~ Z;; = —2007 jw <g(21) +g(22) + iQ + %) (72)
matrix, which is computed directly in [7]Z" is computed LA

using (65). Note that these matrices are compressed or reduggdre

in order and contain the effects of nonuniform charge and cur-

rent distribution in each conductor. All loss mechanisms rele- 210 = (2b % (d; — d;)j)(j — 1) V800mow (73)
vant at microwave frequencies are thus contained in these ma- ' 2

trices.Y “ is frequency dependent and includes electrically irmnd

duced substrate losseg? includes ohmic losses, skin and

proximity effects, and magnetically induced substrate losses. g(z) = / e~V 2?2 — lde. (74)
Writing (68) and (69) in the standard modified nodal analysis 0
(MNA) matrix notation, one obtains The above integral can be represented as follows:
—Y°s D 0 Ki(z) L(2) gz 3 5) 22
2) = ) — 2 F (1,02, 24,2
D —zMg <”> M), @o W= A3 2T
J 0 ¢ Vg2 (75)

The last two rows of the above matrix simply enforce boundagge.refl and K, are first-order modified Bessel functions of
conditions at the input and output terminals, which forces thet first- and second-kind, respectively, giid is a generalized
terminals to equal the impressed voltage. Note the right-hafgPergeometric function [33]. Since (74) represents the contour
side of the above matrix contaisV zero terms followed by intégration of an analytic function, its value is path independent.
the impressed voltages. The matfbsimply averages, whereasUsing this property, integral representations of the various stan-
the matrixD subtracts adjacent node voltages and terminal cifard mathematical functions can be used to derive the above

rents. In the continuous limit, these matrix operators represéggult: . o o
integration and differentiation, respectively. However, as previously noted, numerical integration is often

The above system can be solved numerically using Gaussfager than the direction computation of (75), and this approach
elimination. Since a typical device involves hundreds or at mot!l e pursued for the more complicated geometries where an-
thousands of elements, numerical packages such as LAPA@Itical results are more difficult to obtain.

[30] can be used to efficiently compute the inverse of (70). LA-
PACK uses BLAS level-3 routines which utilize the syste

cache to maximize memory throughput. For larger systems, it-For the two-layer problem, the equations of Section Il are set
erative solutions are more appropriate. up and involve six equations in six unknowns. The solution can

Similarly, (66) can be computed numerically using QUADbe simplified into the following form:

PACK [31]. This package contains code to efficiently calculate (m = ) — (13— ms) tanh(ty,)
(66) and the results converge much faster than using Romberg(m) = ¢ 2™ 12 1 722 73) 2 72 (76)
integration, as is done in [32]. The above algorithms have been T2(mys) (72 +mys) tanh(ty2)
assembled into the user-friendly packalyealysis and Simu-  3Online]. Available: http://iwww.eecs.berkeley.edu/niknejad

. Two-Layer Substrate
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TABLE | 1
SPIRAL L27 PHYSICAL DIMENSIONS 0.9
Spiral Name 1.27 0.8 D\l
Outer Length (um ) 250 ‘% oA °°h”‘c\
Metal Width W (um ) 105 0.7 N} < g
Metal Spacing S (um ) 3 0.6 < e
No. of Turns N 7.75 ) / \Q& <
Metal Layer Mb 0.5 _ : BT
Metal Sheet Resis. (mf1/sq) 35 / .llﬂ"'ﬂ'u?m RLL K
Metal Thickness (um ) 0.91 0.4 >
Capacitance of Substrate (aF/um ?) | 6.12 0.3 [
. . ; 02 l/ o = St2meas Zoo
wherey, denotes the sourgecoordinate and is the thickness o o S11meas
of the top substrate layer. Note that (76) reduces to (71)}as ' sim
oo. It can also be shown that 0 ‘ ‘
0 2 4 6 8 10 12 14
I(I(m
lim ( ( )) < 0. (77) GhHz
m—0 m (a)
Also, since (76) is exponentially decreasing for largenumer- [ °
ical integration of (66) converges rapidly. 1601 o :;'"eas F’“}\
. o as L)
The above result along with (66) can be used to solve fol simme .
the eddy-current losses and decrease in inductance due to t
conductive substrate. 50 - ]
C. Measurement Results 10 /\\%
Several planar and nonplanar spiral inductors have bee \ Mh\
fabricated in National Semiconductor's 0.288¢ CMOS-8 0| B o
process. This process utilizes a bulk substrate of21@m, on | i‘“‘m oeere
sufficiently resistive so that eddy currents play a minor part in M
the bulk. However, the top layer of Si is fairly conductive at _14¢ | -
15 x 10~ © - cm. The thickness of this layer is less thaparh, MQJ
but this is enough to cause significant eddy-current loss. -190
The layout of a spiral inductor is summarized in Table I. As  © 2 4 6 8 10 12 14
shown in Fig. 4, spiral inductat27 is a planar device utilizing Ghz
the top metal layer. (b)

Measurements are performed using a ground-signal—grourig6. Measured and simulateeparameters (magnitude and phase) of spiral
(G-S-G) coplanar waveguide pad configuration. Thpa- inductorL27.
rameters are measured using an HP 8719C Network Analyzer.
G-S—-G coplanar cascade probes are used and the setup '°
calibrated using a Cascade Microtech 832210 calibration 8 {s.~~| e Lmeﬁ
substrate. The open-pag@dparameters are also measured and s | ook —Lsim
subtracted from the measurgeparameters to remove the pad 5 | 0

. 4
capacitance and loss. 6 N
Measured s-parameters for inductod.27 are shown in

Fig. 6. The simulated and measured results match well. The *] K¢
discrepancy above the self-resonant frequency is in the capac * g
itive region where we are less interested in the device. Notice 3 — <3 -
that the inductor self-resonates at a frequency of 4.25 GHz. > | N
Simulations using ASITIC predicted a self-resonant frequency 4 |
of 4.15 GHz. The simulations are performed on a Pentium Il | \&%
400-MHz machine running the Linux operating system. Each e
frequency point requires less than 10 s of computation. In”' 0
Fig. 7, we plot the effective value of inductance. This is derived
using a one-to-one transformation of tkeparameters into
n-parameters [3]. Again, a good match is observed betwe®g 7. Measured and simulated inductance (imaginary componést pbf
the theory and measurements. The inductance decrease isSAlf@ nductorL.27.

mostly to the capacitive effects rather than the inductive effects.

Inductance value decreases slightly due to skin effect and edslyhat energy is coupled from port to port through the winding
currents in the substrate, but the main reason for the decreaapacitance at higher frequencies.

GHz
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Fig. 8. Measured and simulated resistance (real componériy; pfof spiral  Fig. 10. Measured and simulated substrate resistance of spiral indiifor
inductor .27.

500
5 ]
25 o Qmeas 400 1
' Qsim
\ ——Q (no eddy) % L
0 - - £33 300 1 Dnu”
DD
\ o oo"% @ go Dungnﬂ‘:‘fw
25 o 50 o ° DD____/
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Fig.11. Measured and simulated substrate capacitance of spiral ind@Gtor

Fig. 9. Measured and simulatégl factor (imaginary over real component of

" iral i 1.27. —
21) of spiral inductorL.27 also shown in Figs. 10 and 11. The overall shape of both curves

matches the measurements well. The low-frequency substrate
Fig. 8 shows the effective value of series resistance as a fungsistance measurements are noisy due to measurement error.
tion of frequency. Two simulations are performed: with and
without eddy-current losses. As evident in this figure, eddy-cur- VI. CONCLUSION
rent losses are critical to model. The variation in frequency of .
the series resistance is due to various competing effects. Skir " this paper, we have presented 2-D eddy-current loss equa-
effect and proximity effects increase the series resistance, HBPS applicable to transmission lines and interconnect over a

beyond 1 GHz, this is swamped by the increase from eddy clﬁn-ndlici've ‘:‘]léb‘:'rtritef' :’gerre?u&tz a:e dals\(j ?ppllggblii\to splgal
rents. At higher frequencies, more energy is transported cap Cduco S a ansformers abricated over conductive sub-

itively and, consequently, the resistance decreases and eve%}r&tes. We have proposed a hybrid calculation of the magnetic

ally becomes negative. The real part of the total inputimpeda veector potential to r?‘ta'” th? accuracy of a three_-dlme_nsmnal
&?ee-space formulation while exploiting the simplicity of

looking into each port, of course, is positive at all frequencie )
The@ factor, the ratio between the imaginary and real part g‘;e .2'D eddy-pqrrent loss formulation. Measurement results
(fgnflrm the validity of our approach.

the input impedance, is plotted in Fig. 9. Again, a good match
observed between the theory and measurements. Note that neg-
ative Q factor implies that the device is acting as a capacitor
rather than an inductor. In reality, this plot is misleading, as it The authors wish to greatly acknowledge National Semicon-
implies a@ of zero at self-resonance. A better way to calcuductor, Sunnyvale, CA, for the fabrication of the test structures.
late @ is given in [3], but for comparison, the given definitionThe authors also greatly appreciate A. Eldredge, Silicon Labo-
is better since it involves a minimal transformation of the meaatories, Austin, TX, for help in the layout and verification of
sureds-parameters. The substrate resistance and capacitancetedest structures.
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